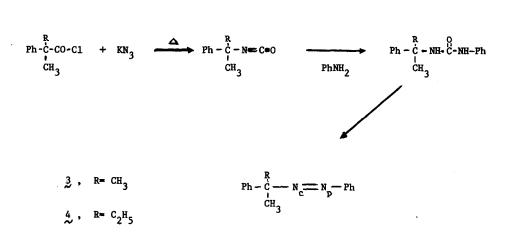

¹⁵N STUDY OF THE PHENYLDIAZENYL RADICAL: A SEARCH FOR PHENYL MIGRATION

Ned A. Porter^{*} and John G. Green Paul M. Gross Chemical Laboratory Duke University Durham, North Carolina 27706

(Received in USA 19 May 1975; received in UK for publication 17 June 1975)

The phenyldiazenyl radical $Ph-N_2$, $\frac{1}{4}$, has been established as an intermediate in the decomposition of several unsymmetric azo compounds. Stereochemical studies¹, solvent viscosity effects², deuterium isotope effects³, and most recently CIDNP evidence⁴ all support the intermediacy of PhN_2 . Little experimental evidence concerning the structure of PhN_2 . has been presented, however. CIDNP studies⁴ suggest that it is a σ radical and calculations support this view indicating a bent structure with a C-N-N angle of about 135°.⁵ The known propensity for phenyl migration in β phenethyl radicals⁶ suggests that the degenerate rearrangement of $\frac{1}{4}$ (Scheme I) is possible. A spirodiazirine cation analogous

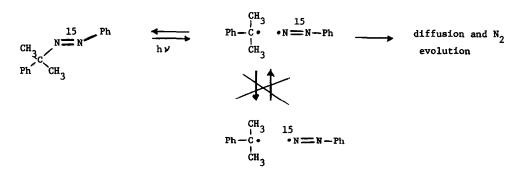


to χ has, in fact, been proposed as an intermediate in the decomposition of benezendiazonium salts.^{7,8} Lewis and Insole⁷ observed 2% exchange of α and β nitrogen during decomposition of the salt to 80% completion and Swain, Sheats, and Harbison⁸ have recently confirmed this earlier observation.

We report here results which show no detectable scrambling of a nitrogen label in the phenyldiazenyl radical, $\frac{1}{2}$. The lack of rearrangement observed in the diazenyl radical is in marked contrast to β -phenethyl radical systems where rearrangement approaches 100% in some cases.

The system chosen for study was the azo compound z. The synthetic approach is a modification of the reported synthesis of z.^{1b} The Curtius method used here, however, conveniently

Scheme II


introduces label at either nitrogen. Thus, ξ with the nitrogen attached to the phenyl group (N_p) labelled with 97% ¹⁵N could be prepared from labelled aniline. The cumyl nitrogen (N_c) could be labelled to the extent of 50% from ¹⁵N potassium azide.

 15 N magnetic resonance spectra of the labelled azo compounds were obtained on a Bruker HFX 10 spectrometer. The signal due to the phenyl nitrogen (N_p) is found 132 ppm downfield from 15 NO₃⁻⁹. Absorption due to N_c is found 170 ppm downfield from 15 NO₃⁻⁷. The azo compound labelled at N_p (97%) was photolyzed in benzene with pyrex filtered light from a 450 watt medium pressure Hg lamp until 50% of the compound remained. An analogous optically active azo compound $\frac{4}{\sqrt{2}}$, when photolyzed under comparable conditions was previously reported to show considerable racemization at the carbon a to the azo linkage.^{1a} This experiment, along with CIDNP experiments reported previously⁴ demonstrate that under these conditions the phenyldiazenyl radical is formed and undergoes internal return to the starting azo compound.

Labelled azo compound remaining after photolysis as described (<u>vide supra</u>) was isolated from the photolysate and purified by HPLC.¹⁰ Recovered 3 obtained in this way showed only the ¹⁵N absorption due to N_p label after 55,000 scans. Signal to noise for the N_p signal was greater than 320/1. We would thus have been able to detect at least 0.6% label at N_c if present.

We conclude that rearrangement of the phenyldiazenyl radical in this system is indetectably small. (Scheme III). 15 N CIDNP studies to be published also indicate no detectable rearrangement.

Scheme III

<u>Acknowledgements</u>: This work was supported by a grant from the National Science Foundation. We also are indebted to the Duke University Research Council Major Grants Program for the ¹⁵N spectrometer.

References and Notes

- (1) (a) N. A. Porter, M. E. Landis, and L. J. Marnett, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 795(1971).
 (b) N. A. Porter and L. J. Marnett, <u>ibid.</u>, <u>95</u>, 4361(1973).
- (2) W. A. Pryor and K. Smith, ibid., 92, 5403(1970).
- (3) S. Seltzer and F. T. Dunne, ibid., 87, 2628(1965).
- (4) N. A. Porter, L. J. Marnett, C. H. Lochmüller, G. L. Closs, and M. Shobataki, <u>ibid.</u>, 94, 3664(1972).
- (5) K. G. Seifert and F. Gerhart, <u>Tet. Letters</u>, #10, 829(1974).
- (6) For a review see J. Wilt "Free Radicals", Vol. I, J. Kochi, Ed., Wiley, New York, N.Y., 1972.
- (7) E. S. Lewis and J. M. Insole J. Amer. Chem. Soc., 85, 122(1963), 86, 32,34(1964).
- (8) C. G. Swain, J. E. Sheats, and K. G. Harbison, *ibid.*, *97*, 796(1975).
- (9) The ${}^{15}N$ standard was 5.8 M ${}^{15}NH_4$ ${}^{15}NO_3$ in 2 M HNO₃.
- (10) Liquid chromatography was on 8' of Porasil A, 0.2% Ether in hexane solvent using a Waters ALC 202.